The Human Immune System is an excellent example of variety in cell structure and function.
Basic Information

In order to understand how these cells function, we need to have a general understanding of the immune system itself.
Basic Information

In order to understand how these cells function, we need to have a general understanding of the immune system itself.

The job of your immune system is to keep foreign substances, usually called pathogens, from invading and infecting your body.
Basic Information

In order to understand how these cells function, we need to have a general understanding of the immune system itself.

The job of your immune system is to keep foreign substances, usually called pathogens, from invading and infecting your body.

One of the major challenges of the immune system is to be able to quickly and efficiently identify your own (“self”) cells so that only pathogens are targeted.
In order to understand how these cells function, we need to have a general understanding of the immune system itself.

The job of your immune system is to keep foreign substances, usually called pathogens, from invading and infecting your body.

One of the major challenges of the immune system is to be able to quickly and efficiently identify your own (“self”) cells so that only pathogens are targeted.

A number of different organs and tissues are needed for this to occur.
If a pathogen can get past these barriers, the body must identify and remove it.
If a pathogen can get past these barriers, the body must identify and remove it.

-- The skin and the lining of the body cavities that open to the outside must provide a protective barrier.
If a pathogen can get past these barriers, the body must identify and remove it.

-- The skin and the lining of the body cavities that open to the outside must provide a protective barrier.

-- The entrance to the organs like the gut and the reproductive tract needs to prevent invasion by any pathogenic microorganisms.
If a pathogen can get past these barriers, the body must identify and remove it.

-- The skin and the lining of the body cavities that open to the outside must provide a protective barrier.

-- The entrance to the organs like the gut and the reproductive tract needs to prevent invasion by any pathogenic microorganisms.

-- The mucosal membranes secrete a variety of fluids, such as saliva by the intestinal tract and mucus in the respiratory tract, which provide a defense against foreign micro-organisms.
If a pathogen can get past these barriers, the body must identify and remove it.

-- The skin and the lining of the body cavities that open to the outside must provide a protective barrier.

-- The entrance to the organs like the gut and the reproductive tract needs to prevent invasion by any pathogenic micro-organisms.

-- The mucosal membranes secrete a variety of fluids, such as saliva by the intestinal tract and mucus in the respiratory tract, which provide a defense against foreign micro-organisms.

-- The body carries its own natural microorganisms that we happily live with, which also prevent other more dangerous bugs from taking over.

-- Adapted from www.julies-story.org
Blood

There are three major components to human blood.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it.
Blood

There are three major components to human blood.

Human blood is approximately **55% plasma**, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it. The “cellular elements” blood make up the other 45%. Almost 95% of these are red blood cells (**erythrocytes**) that carry oxygen in the blood.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it. The “cellular elements” blood make up the other 45%. Almost 95% of these are red blood cells (erythrocytes) that carry oxygen in the blood.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it. The “cellular elements” blood make up the other 45%. Almost 95% of these are red blood cells (erythrocytes) that carry oxygen in the blood.

About 5% of the cellular elements in blood are platelets. These are cell pieces that are used for blood clotting.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it. The “cellular elements” blood make up the other 45%. Almost 95% of these are red blood cells (erythrocytes) that carry oxygen in the blood.

About 5% of the cellular elements in blood are platelets. These are cell pieces that are used for blood clotting.
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it. The “cellular elements” blood make up the other 45%. Almost 95% of these are red blood cells (erythrocytes) that carry oxygen in the blood.

About 5% of the cellular elements are platelets. These are cell pieces that are used for blood clotting.

Much less than 1% of blood contains white blood cells, (leukocytes), they are vitally important in fighting infection.

Image: http://www.nursing.ucla.edu/Userpages/mwoo/cbc/smear.htm
Blood

There are three major components to human blood.

Human blood is approximately 55% plasma, which is the “fluid” part of the blood with ions, proteins and other substances dissolved in it. The “cellular elements” blood make up the other 45%. Almost 95% of these are red blood cells (erythrocytes) that carry oxygen in the blood.

About 5% of the cellular elements are platelets. These are cell pieces that are used for blood clotting.

Much less than 1% of blood contains white blood cells, (leukocytes), they are vitally important in fighting infection.
Cell Sizes

The red blood cells are approximately 8 um across and are generally very regular in their size and shape.
Cell Sizes

The red blood cells are approximately 8 um across and are generally very regular in their size and shape.

Platelets are about one third to one half as large as red blood cells, about 2-4 um across.
Cell Sizes

The red blood cells are approximately 8 um across and are generally very regular in their size and shape.

Platelets are about one third to one half as large as red blood cells, about 2-4 um across.

White blood cells are often larger than the red cells, generally 9 - 12 um across. This measurement may vary a great deal since there are many different types of white blood cells.

Image: http://www.nursing.ucla.edu/Userpages/mwoo/cbc/smear.htm
Cell Sizes

For comparison, let’s look at a photograph of a human cheek cell (~50 um) shown at the same scale as our blood cells:
Cell Sizes

For comparison, let’s look at a photograph of a human cheek cell (~50 um) shown at the same scale as our blood cells:
Cell Sizes

For comparison, let’s look at a photograph of a human cheek cell (~50 um) shown at the same scale as our blood cells:

Here you can see the stained nucleus and the small, darkly stained bacteria that are all over the surface of the cheek cell.
Cell Sizes

For comparison, let’s look at a photograph of a human cheek cell (~50 um) shown at the same scale as our blood cells:

Here you can see the stained nucleus and the small, darkly stained bacteria that are all over the surface of the cheek cell.

Notice that typical blood cells are smaller than even the nucleus of a cheek cell.
Cell Sizes

For comparison, let’s look at a photograph of a human cheek cell (~50 um) shown at the same scale as our blood cells:

Here you can see the stained nucleus and the small, darkly stained bacteria that are all over the surface of the cheek cell.

Notice that typical blood cells are smaller than even the nucleus of a cheek cell.
There are 5 major types of white blood cells (leukocytes).
There are 5 major types of white blood cells (leukocytes).

All of them play an important role in fighting disease.
There are 5 major types of white blood cells (leukocytes).

All of them play an important role in fighting disease.

1. **Neutrophils** leave the blood to go to tissues where infection or inflammation is developing. They mainly engulf and destroy bacteria and fungi.
There are 5 major types of white blood cells (leukocytes).

All of them play an important role in fighting disease.

1. **Neutrophils** leave the blood to go to tissues where infection or inflammation is developing. They mainly engulf and destroy bacteria and fungi.
There are 5 major types of white blood cells (leukocytes).

All of them play an important role in fighting disease.

1. **Neutrophils** leave the blood to go to tissues where infection or inflammation is developing. They mainly engulf and destroy bacteria and fungi.
There are 5 major types of white blood cells (leukocytes).

2. **Eosinophils** attack organisms that are too big to be eaten by a single phagocyte, like worms.
There are 5 major types of white blood cells (leukocytes).

2. **Eosinophils** attack organisms that are too big to be eaten by a single phagocyte, like worms.

This image shows red blood cells [R], a neutrophil [N] and an eosinophil [E].

Image: http://www.cytochemistry.net/microanatomy/blood/blood_cells.htm#RED%20BLOOD%20CELLS
There are 5 major types of white blood cells (leukocytes).

3. **Basophils** do not attack and “swallow” invading cells; they release chemical that help the body’s allergic response to a pathogen.
There are 5 major types of white blood cells (leukocytes).

3. **Basophils** do not attack and “swallow” invading cells; they release chemical that help the body’s allergic response to a pathogen.

Basophil surrounded by red blood cells.
There are 5 major types of white blood cells (leukocytes).

4. Monocytes are cells released into the blood from the bone marrow. When they get to a particular site in an organism they may change into macrophages that engulf and destroy invading pathogens.
There are 5 major types of white blood cells (leukocytes).

4. Monocytes are cells released into the blood from the bone marrow. When they get to a particular site in an organism they may change into macrophages that engulf and destroy invading pathogens.

Image: http://image.bloodline.net/stories/storyReader$1628
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:

- **Natural killer cells** attack tumor cells and some cells that have been infected with viruses.
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:

- **Natural killer cells** attack tumor cells and some cells that have been infected with viruses.
- **B-lymphocytes** develop in the bone marrow.
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:

- **Natural killer cells** attack tumor cells and some cells that have been infected with viruses.
- **B-lymphocytes** develop in the bone marrow.
- **T-lymphocytes** develop in the thymus.
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:

 - **Natural killer cells** attack tumor cells and some cells that have been infected with viruses.
 - **B-lymphocytes** develop in the bone marrow.
 - **T-lymphocytes** develop in the thymus.

Lymphocytes originate in the bone marrow, but can proliferate in the spleen, thymus and other lymphoid tissues. Often, large lymphocytes seen in the blood have been activated somewhere in the body, and are traveling to sites of action.
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:

 - **Natural killer cells** attack tumor cells and some cells that have been infected with viruses.
 - **B-lymphocytes** develop in the bone marrow.
 - **T-lymphocytes** develop in the thymus.

Both B- and T- cells are covered with many different molecules. If one of these matches up with a molecule of a pathogen, the B- or T-cell may engulf the pathogen and destroy it. Then the body can make many, many copies of this cell to fight the pathogen.
There are 5 major types of white blood cells (leukocytes).

5. **Lymphocytes** are the fifth group of white blood cells; they are divided into three categories:

- **Natural killer cells** attack tumor cells and some cells that have been infected with viruses.
- **B-lymphocytes** develop in the bone marrow.
- **T-lymphocytes** develop in the thymus.

Both B- and T- cells are covered with many different molecules. If one of these matches up with a molecule of a pathogen, the B- or T-cell may engulf the pathogen and destroy it. Then the body can make many, many copies of this cell to fight the pathogen.

The body keeps a “memory” of every B- or T- cell that has been activated and it is able to attack that particular foreign body almost instantly if it appears again.
Why should I care about the immune system?
Why should I care about the immune system?
Like many parts of the body, we learn a great deal about the immune system by studying what happens when it doesn’t work properly.
Why should I care about the immune system?

Like many parts of the body, we learn a great deal about the immune system by studying what happens when it doesn’t work properly. Sometimes the body is no longer able to recognize certain normally occurring cell types. When this happens the immune system identifies these as foreign cells and begins to attack them. This results in an autoimmune disease.
Why should I care about the immune system cells?

Like many parts of the body, we learn a great deal about the immune system by studying what happens when it doesn’t work properly. Sometimes the body is no longer able to recognize certain normally occurring cell types. When this happens the immune system identifies these as foreign cells and begins to attack them. This results in an autoimmune disease.

Of the scores of autoimmune diseases the have been discovered, some of the more common are:
Why should I care about the immune system cells?

Like many parts of the body, we learn a great deal about the immune system by studying what happens when it doesn’t work properly. Sometimes the body is no longer able to recognize certain normally occurring cell types. When this happens the immune system identifies these as foreign cells and begins to attack them. This results in an autoimmune disease.

Of the scores of autoimmune diseases the have been discovered, some of the more common are:

Nervous System:
- Multiple sclerosis
- Myasthenia gravis

Gastrointestinal System:
- Crohn's Disease
- Ulcerative colitis

Blood:
- Autoimmune hemolytic anemia
- Pernicious anemia

Endocrine Glands:
- Type 1 or immune-mediated diabetes mellitus
- Grave's Disease

Multiple Organs Including the Musculoskeletal System:
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Scleroderma

Skin:
- Psoriasis

http://www.niaid.nih.gov/publications/autoimmune/autoimmune.htm#what